Cómo realizar una migración a 802.11ac

80211ac migrationEl 802.11ac es un nuevo estándar para LAN inalámbrica que pretende satisfacer las demandas de un mayor ancho de banda. Basado en una actualización del .11n, esta nueva tecnología es compatible con los clientes de LAN inalámbrica que operan con versiones más antiguas (como 802.11a/b/g/n).

El nuevo estándar solo emplea la frecuencia de 5 GHz. Para poder usar tanto la frecuencia de 2,4, como la de 5 GHz, los que soporten el estándar .11ac debn ser puntos de acceso de radio duales.

En general, los puntos de acceso 802.11ac tienen dos módulos de radio. Uno soporta a clientes que solo tienen 802.11bgn de 2,4 GHz y el otro es un módulo de radio 802.11ac de 5 GHz. Esto permite que la transición hacia el nuevo estándar sea fluida incluso para los clientes más antiguos. Además, el módulo de radio 802.11ac también es compatible con aquellos clientes que operan en 802.11a/h (4 Mbit/s) u 802.11an. Un funcionamiento mixto entre clientes 802.11a/h, 802.11an y 802.11ac también es posible.

Cómo migrar una red hacia .11ac

Deben tenerse en consideración los siguientes aspectos a la hora de migrar una red al estándar 802.11ac.

Cableado y switches Ethernet

Deben seguir un estándar Gigabit. Las versiones antiguas de switches (de 100 Mbit/s, por ejemplo) deben reemplazarse, ya que constituyen un cuello de botella en sistemas 802.11n.

Los puntos de acceso profesionales usan puertos LAN de 1 Gbit/s a pleno rendimiento. Por lo general, no es necesario instalar dos cables Ethernet y una agregación compleja del tráfico de las dos Ethernet de switch.

La elección entre usar una interfaz Gigabit como enlace ascendente, o recurrir a una interfaz de 10 Gigabits deberá tomarse de manera individual, en función de cada caso.

Fuente de alimentación

En entornos corporativos, se recomienda usar puntos de acceso con el estándar .11ac y tecnología MIMO 2×2 porque necesitan menos de 12,4 vatios, lo que les permite operar vía PoE con arreglo al estándar común 802.3af.

No se recomienda el uso de puntos de acceso 802.11ac con tecnología MIMO 3×3 o 4×4 MIMO, dado que estos necesitan hasta 21 vatios y precisan un cambio en la infraestructura PoE para funcionar correctamente. En teoría, los puntos de acceso con tecnología MIMO 3×3 o 4×4 MIMO pueden instalarse en switches PoE con capacidad para 12,4 vatios, pero su rendimiento baja mucho. Esto se debe a que el dispositivo interpreta que está operando en “modo de emergencia” y solo permite usar una tecnología MIMO 2×2.

Además, los puntos de acceso con tecnología MIMO 3×3 y 4×4 consumen mucha más electricidad (lo que se traduce en gastos de hasta 25 € más por año).

Estudio de la instalación

Si el cliente desea convertir una red que ha estado operando en la banda de frecuencia de 2,4 GHz a una red .11ac de 5 GHz, se debe realizar un estudio de la instalación.

Planificación de canales

Para empezar, habría que determinar el ancho de banda del canal. Todos los administradores tratan de sacar el mayor rendimiento posible al hardware y, por lo tanto, operar en el mejor ancho de banda del canal (por ejemplo, 80 MHz).

Sin embargo, en infraestructuras LAN inalámbricas con varios access points, hay que tener en cuenta que diversos puntos de acceso solo podrán usar el mismo canal de radio si la fuerza del campo del canal reutilizado en la instalación es lo suficientemente baja. En otras palabras, los puntos de acceso que usen el mismo canal deben colocarse lejos los unos de los otros.

Soluciones Teldat con MIMO 2X2

La gama de puntos de acceso de Teldat podrá integrarse sin problemas en instalaciones existentes sin una gran inversión. En comparación con los puntos de acceso con tecnología MIMO 3×3 o MIMO 4×4, los dispositivos Teldat con MIMO 2×2 ofrecen una serie de ventajas tecnológicas.

Hoy en día, invertir en puntos de acceso con MIMO3x3 o MIMO 4×4 no tiene sentido, porque son muy pocos los terminales que soportan esta tecnología. Además, es necesario tener especial cuidado con los dispositivos que pueden adquirirse a bajo precio en el mercado porque rara vez soportan los canales DFS en frecuencias de 5 GHz (lo que es extremadamente importante en instalaciones).

Hans-Dieter Wahl: Jefe de línea de negocio: WLAN

Más allá del Gigabit Ethernet en redes de área local

Global communicationLos futuros puntos de acceso Wi-Fi para empresas permitirán transferir datos a más de 1 Gbps entre el interfaz radio y la red por cable a la que estén conectados de manera ininterrumpida. La infraestructura LAN actual, en su mayoría basada en Gigabit Ethernet sobre cables CAT5e, corre el riesgo de convertirse en un cuello de botella para las comunicaciones LAN.

Existen diversas alternativas para superar este cuello de botella, cada una con sus propias ventajas y desventajas.  Una primera opción sería la de migrar a la tecnología 10 Gbps (10GBASE-T). Esto resolvería el problema al que nos enfrentamos actualmente y dejaría cierto margen para futuras necesidades de banda ancha (al menos a medio plazo). Los inconvenientes de este enfoque giran en torno al alto coste de la infraestructura (puntos de acceso y switches), y la necesidad de sustituir el cableado local. Hoy en día, más del 85% de las instalaciones usan cables CAT5e y CAT6 (según una clasificación de los cables LAN basada en su calidad o capacidad para transmitir más datos) que no son capaces de soportar velocidades 10G. Para ser más precisos, los cables CAT5 no son compatibles con velocidades 10G y los modelos CAT6, aunque sí son capaces de soportar estas velocidades, solo pueden hacerlo en cables de 55 metros como máximo (una longitud insuficiente en la mayoría de casos).Otra alternativa consiste en añadir dos conexiones (cables) entre el punto de acceso y el switch local. Al permitir el uso de switches de Gigabit Ethernet, esta opción es mucho más económica. Pero presenta una serie de inconvenientes.

  • En primer lugar, obliga a conectar un segundo cable LAN al punto de acceso (situándolo, generalmente, en lugares de difícil acceso en el techo o la pared).
  • En segundo lugar, obliga a doblar el número de switches dedicados a la infraestructura inalámbrica y a configurar algún tipo de “agregación de tráfico” en las dos conexiones entre el punto de acceso y el switch local.

¿Ethernet a velocidades superiores a 1 Gbps?

En vista de las limitaciones que presentan estas dos alternativas, una nueva opción está cobrando fuerza en la industria para evitar los cuellos de botella. Se trata de usar Ethernet sobre una nueva capa física que tolera velocidades superiores a 1 Gbps sirviéndose de los cables CAT5e y CAT6.

Al mejorar la tecnología de transmisión a nivel de la capa física, esta solución permitiría usar los cables LAN ya instalados para transmitir Ethernet a velocidades superiores a 1 Gbps. De hecho, se están barajando velocidades de 2,5 y 5 Gbps. Además del objetivo evidente de superar la marca de 1 Gbps, esta nueva tecnología tendría que ser compatible con versiones anteriores con pares remotos de 10/100/1000 (cuando uno de los dos lados de la conexión no sea compatible con la nueva tecnología) y soportar los distintos estándares POE para alimentar el punto de acceso desde el switch mediante el cable LAN.

La principal ventaja de esta nueva tecnología es que no obliga a sustituir los cables LAN ya instalados, aunque, como aspecto negativo, sí requiere el uso de nuevos switches o tarjetas switch. Además, al tratarse de la fase inicial de adopción, el coste de estos switches y puntos de acceso será más alto para la primera ola de productos.

¿NBASE-T ó MGBASE-T?

La industria está apostando fuerte por esta solución, pero la falta de tecnología y estándares previos ha fragmentado el mercado y lo ha dividido en dos sistemas diferentes e incompatibles: NBASE-T y MGBASE-T. Cada uno de ellos, respaldado por sus respectivos clientes comerciales y organizaciones sin ánimo de lucro, está luchando por ampliar su cuota de mercado y convertirse en la tecnología reinante. Por su parte, los proveedores de tecnología (silicio) y sistemas están alineándose con un grupo u otro (en ocasiones con ambos).

Aunque predecir el futuro resulta siempre muy complicado, parece que una de las dos tecnologías acabará imponiéndose o ambas se fusionarán en un único estándar. Hasta entonces, la interoperabilidad seguirá siendo imposible.

Eduardo Tejedor: