https://www.teldat.com/wp-content/uploads/2022/06/cropped-Foto-Perfil-JBG-2-500x500-1-96x96.png

TELDAT Blog

Communicate with us

Securing Business via Resilience networks

Jun 10, 2014

One can safely say that currently businesses of any kind require WAN resilience, as part of their network  set up, because independently of a company’s size (SME’s or Corporations) or business environment, WAN outages hit hard. There is no doubt in that. Some years ago only large corporations would have a resilience programme, in order to protect their mission critical data and were classified as disaster recovery networks, because of the scenario and what they had to protect. Obviously these networks were extremely expensive.

Since then, the business environment has developed very quickly. Now, even for a small or medium company, not being able to secure the communication line can be classified as a disaster. Being connected 24 hours, 7 days a week is a must, as the flow of data between companies, whether internally between different branch offices or externally with their clients and their suppliers is essential. Moreover, as is widely known, a current cut in the data communication will also mean a company being left without telephony with the increasing amount of ToIP (telephony over IP).

So a part from the direct results of what a WAN outage brings, what are the consequences for a company of being left without data and voice connectivity? Obviously, the current business which should take place will be directly lost. New business opportunities would be lost as potential clients cannot contact you or vice versa, you cannot contact them. Competitive advantages are becoming increasingly difficult to obtain, but a period of time without connection and they disappear with lower customer satisfaction. This will consequently turn into employee dissatisfaction and during the WAN outage itself, obviously employee frustration will prevail.

With all the above in mind, it is clear that any risk of WAN outage has to be eliminated. Over the last few years, the market has developed many forms and formats of WAN failover or backup, but it must be said that not all can be classified as being as effective and efficient.

ISDN was initially the most common form of establishing a communication failover, however this is decreasing rapidly. Then xDSL lines started being used for failover, whether as a backup for larger main line connections such as Metro Ethernet or in other scenarios, xDSL lines were duplicated to have resilience. Although landlines are very stable, they can bring certain problems if used as a resilience line. Firstly, if the main line and resilience line belong to the same carrier, failover has a high probability of not working. Secondly, even if the failover line is from a different carrier, but the outage is produced in the last mile of the network, the failover will not work. Thirdly, carrier pricing for resilience landline connections and services tend to be more expensive than other forms. Moreover, if the office or company site needs additional wiring for the landline resilience service, again this increases the cost.

So a cellular backup and failover line can reduce or even eliminate the disadvantages that landlines have. However, can a cellular line offer all the requirements that a company data resilience network requires? Perhaps some years back, it would have been difficult to say, but in 2014 we can safely say that a cellular line can perfectly act as a resilience network for a main landline network for two reasons. One, cellular lines are increasingly being used to transmit data. Some companies even use them as main lines. Two, 3G, 4G / LTE can now give the bandwidth that most resilience networks require and latency is no longer an issue either.

However, how does a cellular line eliminate the disadvantages that a resilience landline has? Perhaps the most important point is that a cellular 3G or 4G / LTE line is a totally independent network! It is not related in any manner to the fixed main line carrier cabling. Secondly, the cost of a 3G or 4G / LTE connection is much less than a landline. Thirdly, within the company office or site, cellular resilience network is fast and easy to deploy, primarily because no additional cabling is required.
However, there is one issue that must be looked into very carefully when deploying cellular as a resilience network. What type of equipment should be used to enable the 3G or 4G / LTE failover network to be set up? Initially, if the company has a modular router for the main line, a cellular daughter board can be placed into this router as failover. Yet, does this router have a slot available and if it does, is the router positioned in a spot with good 3G or 4G / LTE coverage? If the company can comply to theses issue, then this option is a good and safe option.

Nonetheless, in most scenarios this is not so. Here the company would have to look into adding a specific cellular device to establish the connection of the 3G or 4G / LTE resilience network. One should also bear in mind, that not any cellular device will do! Companies have to make sure that the 3G or 4G / LTE device installed is capable of carrying out all the routing functions that the main fixed line router currently carries out. This is of utmost importance; otherwise a full failover network will not be set up.

These type of devices do exist on the market, although perhaps not as many as are currently available for fixed line connectivity.
Teldat does have different options to offer full cellular network resilience; compact cellular routers or a totally unique device, Teldat-4Ge which connects to the cellular network directly with the main fixed line router.

In all, it can be said that resilience is of vital importance for any type of business and economically viable independent of company size.

Tags:

Related Posts 

About VLANs on Switches

About VLANs on Switches

Continuing the series of blogs posts on the most representative technologies to consider when selecting switches, this time we look at VLAN technology. VLANs arose from the need to isolate different stations operating on the same physical local...

read more